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Abstract. We use the ZD quantum percolation model to simulate the mesoscopic transport 
propertiesol disordered metallic films. The conductance of amesoscopic sample is calculated 
by the multichannel Landauer formula, with the transmission and reflection coefficients 
evaluated numerically with a recursive Green-function approach. The distribution of the 
conductanceis found toexhibit threedistinct types: normal, log-normaland between normal 
and log-normal, depending on the sample size L and metal fraction p ,  The variation of the 
meanwithL yieldsthe localhationlengthandthe root-mean-squareconductance fluctuation 
A g  is shown to have different regimes, including the universal-conductance fluctuation 
regime where A g  is constant as a function of L and of the order of $/h .  Based on these 
results, we propose the use of mesoscopic samples of disordered metallic films for the direct 
experimental observation of Anderson localization for electrons. Two possible sample 
systems are discussed. 

1. Introduction 

Mesoscopic is a term denoting the sample scale intermediate between the molecular 
scale and the bulk scale. For electronic transport, the importance of making this sample 
size regime distinct is that one can observe the effects due to phase interference of the 
electronic wavefunctions, and novel phenomena are expected. The recent discovery of 
universal conductance fluctuations [l] (UCF) is a good example. The primary motivation 
of this work is to examine the mesoscopic electronic transport properties of disordered 
ZD metallic films, and, based on the results obtained, to propose experiments for the 
direct observation of Anderson localization of electrons, conductance fluctuations, 
distribution of conductances and various regimes of metallic conduction. Two possible 
systems are envisaged: granular metal films and disordered ZD electron gases. 

Granular metals are metal-insulator composites formed by co-sputtering or co- 
evaporation. They are mostly in the form of thin films less than l pm thick. Over the 
past two decades, the electrical tranport properties of granular metal films have been a 
topic of active experimental and theoretical study [Z]. In the dielectric regime, where 
the metal grans are dispersed in an insulating matrix, electrical conduction is by the 
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hopping mechanism [3,4] whereby the charge carriers are transported from gain to 
grain via thermally-activated tunnelling. In the metallic regime, on the other hand, 
electrons can percolate directly through connected metallic networks so that the con- 
ductivity is expected to exhibit normal metallic behaviour. However, due to the small 
size and random nature of the metallic channels, the electrons scatter strongly, which 
can lead to localization. Localization behaviour has indeed been observed indirectly in 
the metallic regime of granular metals. For example, at low temperatures the resistivity 
of granular metal samples increases logarithmically as the temperature decreases [5], 
indicating that as T - t  0 all electrons tend to be localized. Due to the indirect nature of 
such observations. however, a detailed picture of electron localization is impossible. 

The advantages of using mesoscopic granular metal samples to observe Anderson 
localization are threefold. First, the electron density is high in the metal, which means 
that one can neglect electron-electron correlation effects and obtain a clean signature 
of the Anderson localization. Second, the volume fraction of the insulator is variable, 
which means that the material offers a handle on controlling the scattering strength; this 
makes it possible to encompass a broad range of localization characteristics, including 
the variation of localization length and the possibility of observing the onset of electron 
correlation effects as the insulator volume fraction is increased close to the percolation 
threshold. Third, by using mesoscopic sample sizes (of the order of 0.1-1 pm and at 
sufficient low temperatures so the inelastic scattering length is larger than the sample 
size),whicharewithin thecapabilityofmodernlithographic techniquos,onecanobserve 
not only the mean property of the conductance, such as the localization length, through 
sample-size variation. but also the conductance tluctuation and the form of the con- 
ductance distribution function. This information would be invaluable in the creation of 
a detailed picture of the Anderson localization phenomenon. 

For aZDekCt1On gas, which is easily realizable nowadays wing field-effect transistors, 
it is envisaged that by artificially inducing disorder in the transverse interfacial region, 
maybe by lithographic means, one can create locally insulating regions for the electron 
gas, thus causing scattering and localization. The advantage of this system, in addition 
to the two advantages mentioned above, is the variability of the Fermi energy (through 
the application of a gate voltage) and the associated electron density. The disadvantage, 
however, is that sample fabrication could be more difficult and time consuming. 

In this work, we calculate the mesoscopic conductance of a disordered 2D metallic 
film using a quantum percolation model [6] in which a film with metal fraction p is 
simulated by conducting grains randomly occupying the sites of a simple square lattice 
with probability p .  In practical terms, two-dimensionality implies a film thickness of 
-100-400 A forgranular metals. Our resultsindicate fourmesoscopictransport regimes. 
In the localized regime, i.e. sample size L P localization length &oc, the distribution of 
conductances is log-normal and the root-mean-square (RMS) conductance fluctuation is 
small compared with 2 / h ,  where e denotes the electronic charge and h is Planck's 
constant. In the opposite regime, i.e. L < mean free path I 4  &, the distribution is 
normal and the RMS fluctuation is larger than e2/h.  This is the ballistic transport regime 
(Ballistic transport does not mean no fluctuation since random geometry in each con- 
figuration can still induce random conductance). Between these two limits there are two 
regimes. For I < L < 101, the transport is diffusive and the conductance distribution is 
still normal but the RMS fluctuation is greater than e2/h. We denote this as the diffusive 
regime. For 101 S L < on the other hand, the distribution can be either normal or 
between normal and loenormal; the RMS fluctuation of the conductances is constant as 
a function of L and of the order of e2/h. By definition. this is the regime of universal 
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conductance fluctuations (U@. Our results, therefore, suggest experiments to verify 
these conductance regimes by looking at conductance and its variation with sample size, 
magnetic field, andp. 

In the following, section 2 describes the model and the methodof calculation. Results 
on mesoscopicconductance behaviour are presented in section 3, followed by concluding 
remarks in section 4. 

2. Model description and the calculational approach 

The most important characteristic of a mesoscopic sample is the absence of inelastic 
collisions. That means whatever the sample size the temperature must be low enough 
that the inelastic scattering length is larger than the sample sue. However, that means 
that for mesoscopic samples there must be a new definition of the conductance, since in 
the traditional definition conductance is associated with dissipation, whereas now there 
is no dissipation in the samples. Landauer [7] was the first to show that in the absence of 
inelastic collisions the mesoscopic conductance can be obtained from the transmission 
and reflection coefficients of the sample in units of 2 / h .  To relate this formulation of 
the conductance to the traditional definition, one then has to argue that the dissipation 
occurs in the resistive leads, i.e. dissipation is non-local. To calculate the conductance 
of a mesoscopic sample of a 2D granular metal film we consider a simple square lattice 
in which a fractionp of the sites is occupied by metal grains, We will only consider the 
regime p > pc  = 0.593 so that the metal grains always form a connected network. By 
including inour calculation the effects of aperpendicularmagnetic field, the Hamiltonian 
of the quantum percolation model may be written in the following tight-binding form: 

with 
0 if site i is occupied by a metal particle 

m if site i is occupied by an insulator 
Ei = ( 

where ~~denotestheunitofquantumflux, hc/e,Aisthevectorpotential,tisthenearest- 
neighbour hopping matrix element, taken to be unity in this work, and i and j denotes 
the nearest-neighbour site indices of a square lattice with a lattice constant a ,  taken to 
be the typical granular particle sue -100 A. In our numerical calculations the length is 
calibratedinunitsofa. In(1) thefirst termisthesiteenergyterm.Hereweassigninfinite 
site energy to insulators, which would prevent electrons from hopping to such sites. The 
second term describes the hopping between nearest-neighbour metal grains. Here the 
applied magnetic field can introduce a position-dependent phase to the hopping matrix 
element, obtained using the ‘Peierls substitution’ [8]. This model can be easily gen- 
eralized to models of finite thicknesses, so that 3D effects may be considered. 

In order to calculate the conductance, we connect two sides of a sample of size 
L x L by perfect leads, i.e.p = 1. The conductance is evaluated using the multichannel 
Landauer formula [9], i.e. 

where Lo denotes the number of propagating channels in the leads. The hard-wall 
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boundary condition is chosen along the transverse direction, y ,  with discrete transverse 
momentum index ky = m / ( L  + 2 )  where n = 1,2, . . . , L + 1. The real solutions of k, 
in the foUowing dispersion relation determine the number of allowed channels Lo: 
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E/ t  =  C COS k,a + cos k,a). (3) 
A factor of two, due to spins, has been included in (2). The values of T, and R, are 
related to the transmission and reflection matrices by 

LO 

1 - 1  

LO 

T,  = >= I f ,  1’ ( 4 4  

R~ = >= Irg/* 
j = 1  

which in turn are calculated numerically using the recursive Green’s function technique 
[lo, 111 with 

I t i i12=uiuiIG,: (L+2,0)~* = ~ ~~ ~~~ (5) 
Iril12 = l i G G $ ( 0 , 0 ) - 6 i j 1 2  (6)  

where G; (n, n ‘ )  is the retarded Green’s function with a source at n’of thex coordinate 
of channel j and a receiver at n of channel i .  Positions 0 and L + 2 are located inside the 
incoming and outgoing sides of the leads, respectively. The channel velocity U in (2), (5) 
and (6) is given by aE/ak, evaluated at k,(i). Technically, we have assigned a value of 
zero to any hopping matrix element connecting with empty site(s). Thus, the infinite site 
energy that appeared in (1) becomes irrelevant in the calculation. 

3. Results and discussion 

3.1. Statistical distributions ofg 
We would first like to discuss the statistical distribution of the dimensionlessconductance 
g. Although there is a general belief that the distribution of g should be normal in the 
extended side but lognormal in the localized side [12,13], yet, to our knowledge, there 
existsnosystematicnumericalstudyofthisproblem. In thiswork, we have systematically 
calculated the distribution of g as a function of p ,  sample size (L) ,  and Fermi energy 
( E / t ) .  Two characteristics ofour calculatedg are to be noted. The first is that in contrast 
to the classical 2D conductance, which is sample-size independent, the mesoscopic g is 
L dependent due to the coherent backxattering effect. Second, our calculated g always 
goes to zero as L + m, in accordance with the known result that in a ZD random medium 
all waves are localized. Taking the ergodic hypothesis, which is believed to hold, we 
equate the fluctuations ofg from sample to sample to that of a given sample as a function 
of E/I. Three types of distribution are found. When the sample size, L, is larger (but not 
muchlarger) than theelasticlength, I ,  but muchsmaller than thelocalizationlength, 
i.e.[< L <Eloc, thedistributionofgisnormal. Intermsofgand Ag, thecorresponding 
criterion for normal distribution is that g 3 3Ag. In the opposite limit where the sample 
size is much greater than the localization length, i.e. L, the corresponding dis- 
tribution is loenormal. The intermediate regime ischaracterized by distributionswhich 
are neither normal nor log-normal. 
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Figure 1. Histogram of the conductance distribution for 500 configurations. The parameter 
values are Ell = 0.01, p = 0.95, and L = 60. The broken c w e  is a Gaussian lineshape to 
guide the eye. 

.. 
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Figum2. Histo~amoltheconductancedistributionplottedasafunctionof In[G/($/k)] for 
900configurations.Theparametervaluesare Ell  = 0.01.p =0.75,and L = 60.The broken 
curve is a Gaussian lineshape to guide the eye. 

The three typical cases are shown in figures 1-3 for L = 60, E/r = 0.01 andp = 0.95, 
0.85 and 0.75. At p = 0.95, the value of 1 is about 12, and the localization length is 
expected to be much greater than 60. The distribution of g for 500 configurations is 
s h o w  in figure 1 and is seen to be a very good Gaussian. A t p  = 0.75, the localization 
length is only 2.7 (much smaller than sample size L = 60, or 0.6 pm, if the grain size is 
-100 A) and the histogram of In&) is shown in figure 2 for 900 configurations. The 
distribution is found to be a good Gaussian in terms of Ink), i.e. the distribution of g is 
log-normal in this regime. However, the case ofp = 0.85 belong to the intermediate 
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Figure 3. ( a )  Histogram of conductance distribution for 700 configurations. The parameter 
values are E / [  = 0.01.p = 0.85. and L = 60. ( b )  Histogramof theconductance distribution 
plotted as a function of In[G/($/h)] for 700 configurations, The parameter values arc the 
same as for (a). 

regime with & = 16, which is not much smaller than the sample size (60 x 60). The 
distribution, with700configurations.isshowninfigure3in termsofbothgandln(g); they 
are clearly non-Gaussian. The peculiar distribution can be viewed as being intermediate 
between normal and log-normal, i.e. the large conductance part is normal (figure 3(a)) 
while the smaller conductance part is log-normal (figure 3(b) ) .  

3.2. First moment of the distribution: localization length 

For a fixedp. one can get the mean value of Ing, (lng), for various sample sizes, L. Its 
behaviour as a function of L is plotted in figure 4 for three values ofp = 0.75,0.80 and 
0.85. Near-linearvariationisobserved. From therelationEbC = -dL/d(lng},weobtain 
the values of as2.7,5.0 and 16.4 forp = 0.75,0.80, and0.85, respectively. In these 
cases, &,,is small compared with our sample sizes, L = 30-90. Whenp becomes greater 
than 0.85, E1, is found to increase drastically. 

3.3. Second-moment of the distribution: conductance fluctuations 

The RMS conductance fluctuation, Ag = d/(g') - (g)2, has been calculated for different 
Fermi energies and as a function of L andp = 0.65-0.90. The behaviour of Ag can be 
roughly divided into two energy regions: (i) a less localized (higher conductance) region 
with 0.3 < E/t  < 2.0 and (ii) a more localized (lower conductance) region with E l f  
outside the region of (i). 

For E/t = 0.5, the RMS value of Ag is plotted in figure 5 as a function of sample size, 
L, for different values o f p  ranging from 0.65 to 0.90. 100 to 6000 configurations have 
been generated for each L and p combination. Those configurations which do not 
percolate across the sample are dropped. In general, less configurations are required for 
good statistics as L becomes large andp approaches one. Although Ag is in general a 
smoothly decaying function of L ,  there exists a region where the value of Ag decays very 
slowly even for large L ,  e.g. 0.75 < p < 0.85 and L > 30. The value of Ag in this region 
agrees well with the theoretical UCF value of 0.862 in 2D. For p close to one, a much 
larger L is required to reach the regionof uc~since theelasticscatteringlengthincreases. 
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L 

Figure4. The averaged value of -In&?) plotted as 
a function sample size L. The data points show a 
linear behaviour. The inverse of the slope gives 
thelocalizationlength. For(A)p = 0.75, (E)p = 
0.80, and (C )p  = 0.85 The value of E/(  isO.01. 

L 

Figure 5. The RMS dimensionless conductance 
fluctuation Agplotted asahnctionofsamplesize 
L for various values of p: A', for p = 0.90, '0' 
for 0.85, 'A' for 0.80, 'W for 0.75, '0 for 0.70, 
and'D'for0.65. ThevalueofE/tis0.5. 

Figure 6. The RMS dimensionless conductance 
fluctuation Agplotted asa functionof samplesize 
L for various valuesofp: '0'0.95; 'A',0.90;'0', 
0.85;'A'. 0.8QW,0.75. The valueof Eltis0.01. 

On the other hand, a s p  becomes close to the percolation threshold p< (= 0.593) the 
localization length becomes smaller and the region of UW is also limited to small L. Both 
of these features can be seen in curves forp = 0.9 and 0.7 in figure 5. 

The situation is quite different in the more localized region, 0 < E/ t  < 0.3. At 
E / f  = 0.01, the curves of Ag for different values of p are shown in figure 6. There is 
no region of constant Ag that can be identified. This may be understood as follows. 
For p s 0.85 the localization length estimated from figure 5 is smaller than L .  That 
means that for the size of samples considered, the system is already localized, with the 
consequent result of decreasing Ag as L increases. On the other hand, when p is 
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P 

Figure'l. Transport regimes of the ZD quantum percolation model as a function of L and p ,  
The upper full curve denotes the localization length, the lower full curve denotes the mean 
freepath.Thebrokencurvedenotestentimesthemeanfreepath. (a)E/r=O.OI.(b) E/I = 
0.5. 

greater than 0.85, the localization length quicMy increases beyond thesample size. The 
corresponding increase in the elastic scattering length, which is proportional to (1 - p)-' 
in the weakdisorderLimit,pushestheregiontoucFtomuchlargersamplesizes(l> 90). 
A roughestimateofelasticscatteringlengthcan bemade by usingthe number ofeffective 
channels (131. In the extended region (L C localization length), we haveg = Ne, = 2Ld/ 
L where Lo is the number of allowed channels. From this relation, the values of I are 
found to be about I = 12,4 and 1.6 for p = 0.95.0.9, and 0.85, respectively. Thus, it 
requires at least L > l a ( =  101) in order to see um for p = 0.95. This is consistent with 
the corresponding curves shown in figure 6 .  

If the same considerations are now applied to the cases shown in figure 5 ,  we found 
that the values of 1 at E/t = 0.5 are about 7.3.7.2 and 1.3 forp = 0.90,0.85,0.80 and 
0.75, respectively. Although these numbers are about a factor of two higher than the 
corresponding numbers in the case of E/t = 0.01, the localization length, grot, is 
also much greater. From finite size scaling the localization length is found to be =30 
for p = 0.70. A rough estimate gives & = 100 and 250 for p = 0.75 and 0.80. Thus 
our results confirm the theoretical prediction that the UCF exists in regions where 
101 C L < &. We have also shown that outside of the UCF region one obtains Ag > 1, 
decreasing with L for L C lo[. For L > Elm, Ag ==Z 1 and decreases with increasing L. 

3.4. Conduction regimes 

Summarizing all the results stated above, in figure 7 we show the conduction regimes as 
a function of sample size L and metal fraction p .  Four regimes are delineated, from 
ballistic ( L  C 0, to diffusive ( I C  L < 101). to UCF (101 < L C &oc). to localized 
(L 5 Elm). In figure 7(a) we show the case for which the Fermi energy is in the more 
localizing energy range of E l f  = 0.01, and in figure 7(b) show the case for which Eli = 
0.5 is in the energy range in which the electron tends to be more delocalized. 
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Feure 8. (a) Calcul~tedgas a funnion ofthe fr3cIion. f.ofquantumflur q o f o r p  = 0.7, L = 
60 and E'r = 0.5. ( 6 )  The mean (gi calculated with a moving window sue of A f =  0.M (c) 
7he ~tsconductarcc Hucruation Ag calculated with a movingwndow slze ofAf=  O.M. 
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3.5. Magnetic field dependence 

Whereas in the results described above we have used different samples for obtaining the 
conductance distribution, it is also possible to look at the conductance fluctuations in a 
single sample by varying the magnitude of the applied perpendicular magnetic field H. 
The idea in such a case is that the magnetic field can introduce random phases (due 
to the random geometry) which can directly affect the interference pattern of the 
electronic wavefuncfions. By varying H, one can essentially regard the same system at 
two very different H values as being two different sam les At the same time, magnetic 

LH becomes less than the physical sample size, then heuristically, LH replaces L in 
determining the conductance. That implies that by increasing Hone can scan across the 
different conduction regimes shown in figure7 foralixedp, Figure 8shows the calculated 
results for p = 0.7, L = 60 and E/t  = 0.5 for g, (g) and Ag as functions off= Ha2/ 
qo, where qo = hc/$ denotes the quantum flux. For particle size a = lOOA,f= 0.14 
corresponds to H = 7T. It is seen that there are indeed large fluctuations in g as a 
function off. The Ag, calculated by using moving windows of width Af = 0.02, show an 
initial rise, a relatively flat region signalling the UCF region and a final decline, probably 
when L, becomes less than I .  However, the variation of (g) with f may not be translated 
into localization length since the magnetic field destroys the timereversal invariance, 
and thereby weakens the coherent backscattering effect that is essential for localization. 

4. Concluding remarks 

It has been more than thirty years since the concept of Anderson localization was first 
proposed [14]. Up until now, while weak localization effects. i e. those associated with 
coherent backscattering, have been widelyobserved [15], strong localizationofelectrons 
hasonly been seenin the context ofmetal-insulator transitionsin doped semiconductors 
and some other materials systems 1161, where the presence of electron-electron cor- 
relation effect inevitably obscures the signature of the Anderson localization phenom- 
enon. In this work we have studied in some detail the mesoscopic electronic transport 
properties of thin metallic films using the ZD quantum percolation model. Based on these 
results we propose experiments to directly verify the Anderson localization. Two key 
requirements of the proposed experiments are: (i) small sample size, which may be 
achieved by lithographical techniques; and (ii) low measuring temperatures so that the 
inelastic scattering length is larger than the sample size (based on estimates, an inelastic 
scattering length of 1 pm for granular metals would mean T- 0.1 K). Since the And- 
erson localization is a generic aspect of wave behaviour in random media, its actual ’ 

observation is expected to have important implications for both basic science and 
practical applications. This is especially the case in view of the continually decreasing 
size of microelectronic systems and hence the increasing significance of the electron 
quantum/wave nature. By presenting this proposal, it is our hope that added attention 
may be focused on verifying this basic phenomenon of wave-randomness interactions. 
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field also introduces a magnetic length LH = v--’ hc/4eH, where c IS ’ speed of light. When 
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